

C-Band, GaN/SiC, RF Power Transistor

5.2 - 5.9 GHz | 75 W | 50% Efficiency | 13 dB Gain | 28 V

IGT5259CW50 and IGT5259CW50S are high power GaN-on-SiC RF power transistors that have been designed to suit the unique needs of C-Band Radar Systems. They operate over the full bandwidth of 5.2-5.9 GHz. Under CW conditions, they supply 50 W of RF output power, with an associated 11 dB of gain and 40% efficiency. They operate from a 28 V supply voltage. For optimal thermal efficiency, the transistors are housed in a metal-based package with an epoxysealed ceramic lid.

FEATURES

- GaN on SiC HEMT Technology
- Output Power >50 W
- Fully matched to 50 Ω Impedance at both Input and Output
- High Efficiency up to 50%
- 100% RF Tested
- RoHS and REACH Compliant
- IGT5259CW50 has a bolt-down flange, IGT5259CW50S is the earless flange option

APPLICATIONS

C-band Radar Systems

Table 1. RF Electrical Characteristics (Case temperature = 30 °C unless otherwise stated)

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Input Return Loss	IRL	6	10	18	dB	P _{OUT} = 50W
Gain	G	7.45	11.6	14.0	dB	f = 5.2, 5.55, 5.9GHz
Drain Efficiency	η	38	45	75	%	
Load Mismatch Stability	VSWR-S	2:1				CW
VSWR Withstand	VSWR-LMT	3:1				$V_{DS} = 28V, I_{DS} = 20mA,$

Table 2. Absolute Maximum Ratings (Not Simultaneous)

Parameter	Symbol	Value	Units	Test Conditions
DC Drain-Source Voltage	V _{DS}	130	V	25 °C
DC Gate-Source Voltage	V _{GS}	-8 to +1.0	V	25 °C
DC Drain Current	I _D	9.6	A	25 °C
DC Gate Current	I _G	1	mA	25 °C
RF Input Power	P _{REIN}	8	W	25 °C
Operating Junction Temperature	T _J	-55 to +200	°C	
Storage Temperature	T _{STG}	-55 to +150	°C	
Soldering Temperature	T _{SOLDER}	260 for 10s	°C	

Note: Operation outside the limits given in this table may cause permanent damage to the transistor

Table 3. DC Electrical Characteristics (Case temperature = 25 °C unless otherwise stated)

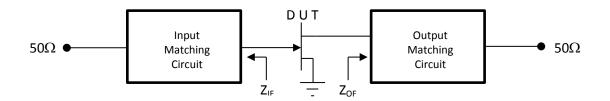
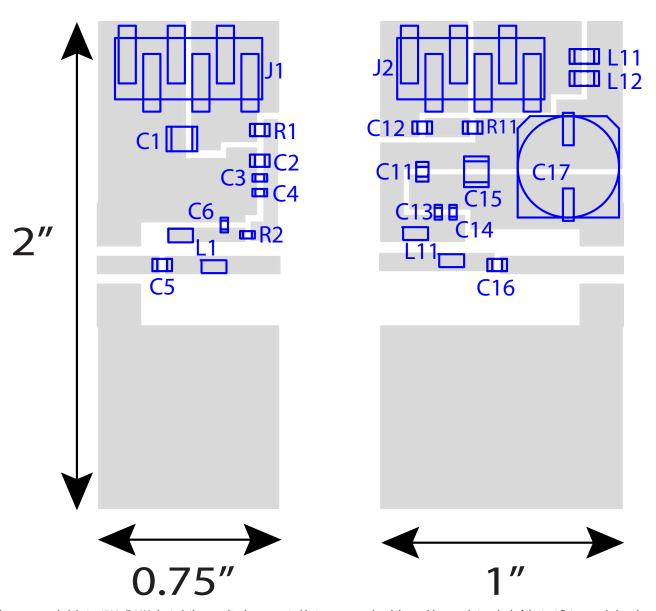

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Gate Pinch-Off Voltage	V _P	-5.0			V	$V_{DS} = 50V$, $I_{DS} = 1mA$
Quiescent Gate Voltage	V _Q		-2.6		V	$V_{DS} = 50V$, $I_{DS} = 1mA$

Table 4. Thermal Resistance (Case temperature = 85 °C unless otherwise stated)

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Peak Thermal Resistance, Channel to Case	R _{TH}	0.8	0.9	1.0	°C/W	$P_{OUT} = 61.1W$ CW $V_{DS} = 28V, I_{DS} = 20mA$

Table 5. Test Fixture Source & Load Impedances (Case temperature = 25 °C unless otherwise stated)

Frequency (GHz)	Z _{IF}	Z _{of}	Units	Test Conditions
5.2	50 + j0	50 + j0	Ω	P _{out} = 50W
5.55	50 + j0	50 + j0	Ω	CW $V_{DS} = 28V, I_{DS} = 20mA$
5.9	50 + j0	50 + j0	Ω	

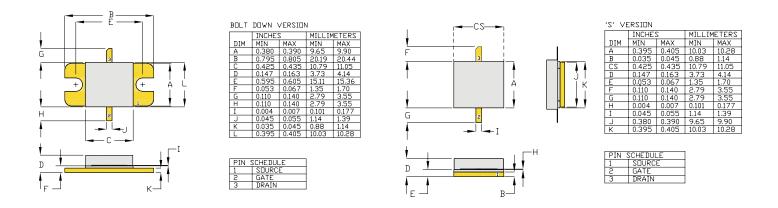


DC Bias Sequencing

TURN ON SEQUENCE	TURN OFF SEQUENCE
 Turn RF Power OFF Set V_{as} = -5V (Negative Voltage to pinch off FET) Measure I_{DS} current, should be <1mA. Turn ON V_{DS} voltage. Slowly increase V_{as} until bias current reaches I_{DQ}. Turn ON RF Power 	 Turn OFF RF Power Turn OFF V_{DS} voltage After V_{DS} is discharged, set V_{GS} = -5V Turn OFF V_{GS} voltage.

TEST FIXTURE

Note: it is recommended that a $4700\mu F$ 63V electrolytic capacitor be connected between ground and the positive supply terminal of the test fixture, and placed as close as possible to the test fixture, in order to minimise pulse droop.



Bill of Materials for IGT5259CW50 Test Fixture

Designator	Description	Part Number
C1	CAP 4.7μF, 1210, 25V	C1210C475K3RACTU
C2, C11, C12	CAP 0.1μF, 0805, 100V	C2012X7R2A104K125
C3,C14	CAP 10PF, 250V, 0603	600S100FT250XT
C4, C6, C13	CAP 3.9pF, 0603, 250V	600S3R9BT250XT
C5, C16	CAP 6.8pF, 0805, 250V	600F6R8BT250XT
C15	CAP 1μF, 1210, 100V, X7R	
C17	CAP, 33μF , C10X10, Electrolytic, 100V	UCZ2A330MCL1GS
FB11, FB12	IND, FB, 120 OHM, 1206, 5A	BLM31PG330SN1L
L1, L11	IND, 8N0	CC_A03TGLB
R1	RES, 100 OHM, 0805	
R2	RES, 15OHM,0603	
R11	RES, 10 OHM, 0805	CRCW080510R0JNEA
PC BOARD	TACONIC RF-35TC-0300-E-C1/C1, 0.030", 10z/10z Copper	

PACKAGE PL44C2

BOLT-DOWN FLANGE OPTION IGT5259CW50

EARLESS FLANGE OPTION IGT5259CW50S

Dimensions: Inches (mm)

ESD & MSL Rating

Parameter	Rating	Standard	
ESD Human Body Model (HBM)	TBD	ESDA/JEDEC JS-001-2012	
ESD Charged Device Model (CDM)	TBD	JEDEC JESD22-C101F	
Moisture Sensitivty Level (MSL)	Unlimited Shelf Life	IPC/JEDEC J-STD-020	

RoHS Compliance

Integra Technologies, Inc declares that its GaN and LDMOS Transistor Products comply with EU Directive 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863/EU.

REACH Compliance

Integra Technologies supports EU Regulation number 1907/2006 concerning the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) as these apply to Integra semiconductor products, development tools, and shipping packaging.

In support of the REACH regulation, Integra will:

- Inform customers and recipients of Integra product if they contain any substances that are of very high concern (SVHC) per the European Chemical Agency (ECHA) website.
- •Notify ECHA if any Integra product that contains any SVHCs which exceed guidelines for REACH chemicals by weight per part number and for total content weight per year for all products produced in or imported to the European market.
- •Cease shipments of product containing REACH Annex XIV substances until authorization has been obtained.
- Cease shipment of product containing REACH Annex XVII chemicals when restrictions apply.

Integra has evaluated its materials, BOMs, and product specifications and product and has determined that this transistor conforms to all REACH and SVHC regulations and guidelines. Integra has implemented actions and control programs that will assure continued compliance.

Disclaimer

Integra Technologies Inc. reserves the right to make changes without further notice to any products herein. Integra Technologies Inc. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Integra Technologies Inc. assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Integra Technologies Inc. products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Integra Technologies Inc. customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Integra Technologies Inc. for any damages resulting from such improper use or sale.

DATA SHEET STATUS

Advanced Specification - This data sheet contains Advanced specifications.

Preliminary Specification - This data sheet contains specifications based on preliminary measurements and data.

Final Specification - This data sheet contains final product specifications.

MAXIMUM RATINGS Stress above one or more of the maximum ratings may cause permanent damage to the device. These are maximum ratings only operation of the device at these or at any other conditions above those given in the characteristics sections of the specification is not implied. Exposure to maximum values for extended periods of time may affect device reliability.